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ABSTRACT: Applying analytics to such data streams to find new information, anticipate future insights, and make control 

choices is a critical step that distinguishes IoT as a viable business model and a technology that improves quality of life. We 

provide a comprehensive overview of utilizing a class of sophisticated machine learning methods known as Deep Learning (DL) 

to assist analytics and learning in the IoT domain in this article. We begin by defining IoT data properties and identifying two 

main machine learning treatments for IoT data, namely IoT big data analytics and IoT streaming data analytics. We also go 

through why deep learning is a potential method for achieving the required insights in these kinds of data and applications. The 

possibility of utilizing new deep learning methods for IoT data analytics is then explored, along with its benefits and drawbacks. 

We provide a thorough overview of several DL designs and methods. We also examine and describe significant published 

research projects that used deep learning in the IoT area. Also addressed are smart IoT devices with DL as part of their 

intelligence base. The impact of DL deployment on fog and cloud centers in support of IoT applications is also examined. Finally, 

we discussed various difficulties as well as future research areas. We emphasize the lessons gained from our experiments and a 

review of current research at the conclusion of each segment. 

KEYWORDS: Deep Learning, Deep Neural Network, Internet of Things, IoT Big Data, Fast Data Analytics, Cloud-Based 

Analytics. 

1. INTRODUCTION 

The Internet of Things (IoT) goal is to use a broad variety of sophisticated technologies to convert 

conventional things into smart objects, ranging from embedded devices and communication technologies to 

Internet protocols, data analytics, and so on. The potential economic effect of the Internet of Things is 

anticipated to open up a slew of new business possibilities and drive the development of IoT-based services. 

According to McKinsey's study on the worldwide economic effect of IoT, the yearly economic impact of IoT 

in 2025 will vary from $2.7 trillion to $6.2 trillion. The majority of the budget is spent on healthcare, which 

accounts for approximately a quarter of the total. Deep Learning Models for IoT Deep Learning for Streaming 

and Fast Data Analytics IoT Devices and Big Data Analyticity Cloud Soft Real-time Analytics Data Flow Hard 

Real-time Analytics Edge Devices/ Fog Computing Industry and energy, with 33 percent and 7% of the 

market, respectively, account for 41% and 7% of the IoT market[1]. Transportation, agriculture, urban 

infrastructure, security, and retail each account for approximately 15% of the overall IoT market.  

These projections indicate that IoT services, their produced data, and, as a result, their associated market, will 

expand at a huge and sharp pace in the next years.Machine learning (ML) will have an impact on employment 

and the workforce, since portions of many professions may be "ideal for ML applications" . This will boost 

demand for certain machine learning solutions, as well as the tasks, platforms, and expertise required to create 

them. In McKinsey's study the economic effect of machine learning is described as "the use of computers to do 

jobs that require sophisticated analysis, nuanced judgments, and creative problem solving.[2]" Advances in 

machine learning methods, such as deep learning and neural networks, are the primary facilitators of 

knowledge job automation, according to the study. Natural user interfaces, such as voice and gesture 

recognition, are additional enablers that are gaining traction thanks to machine learning. By 2025, the projected 

annual economic effect of knowledge job automation may be between $5.2 trillion and $6.7 trillion.  

The figure depicts the breakdown of this estimate by occupation. In comparison to the economic effect of IoT, 

this estimate emphasizes the importance of extracting value from data and the prospective implications of 

machine learning on the economic position of people and communities. Individuals and nations are both 

affected by these economic effects, as people must adjust to new ways of generating money that will allow 

them to retain their standard of living.Many IoT applications have emerged in recent years in many vertical 

areas, such as health, transportation, smart home, smart city, agriculture, education, and so on. An intelligent 

learning mechanism for prediction (i.e., regression, classification, and clustering), data mining and pattern 
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recognition, or data analytics in general, is a key component of most of theseapplications.Deep Learning (DL) 

is one of the numerous machine learning techniques that has been actively used in various IoT applications in 

recent years.  

The top three key technology trends for 2017 were revealed at Gartner Symposium/ITxpo 2016, and these two 

technologies (i.e., DL and IoT) are among them. Traditional machine learning methods do not meet the 

increasing analytic requirements of IoT systems, which is why DL has received so much attention. Instead, 

various contemporary data analytic techniques and artificial intelligence (AI) technologies are required for IoT 

systems, as shown in, based on the hierarchy of IoT data production and administration. The increasing interest 

in the Internet of Things (IoT) and its derivative big data need a thorough understanding of its definitions, 

building blocks, potentials, and difficulties by stakeholders. There is a two-way connection between IoT and 

big data. On the one hand, the Internet of Things is a major source of big data, and on the other, it is a key 

target for big data analytics to enhance IoT operations and services.  

Furthermore, IoT big data analytics has proved to be beneficial to society. The Department of Park 

Management in Miami, for example, has stated that by identifying and repairing broken pipes, they have saved 

approximately one million dollars on their water bills .IoT data is distinct from traditional big data. We need to 

investigate the characteristics of IoT data and how they vary from those of conventional big data to better 

understand the needs for IoT data analytics. The properties of IoT data are as follows Large-Scale Streaming 

Data: For IoT applications, a plethora of data collecting devices are dispersed and deployed, generating streams 

of data on a continual basis. As a result, a massive amount of continuous data is generated [3]. A large number 

of sensing devices gather and/or produce different sensory data throughout time for a broad variety of areas 

and applications in the Internet of Things (IoT) era. These devices will produce large or fast/real-time data 
streams, depending on the nature of the application. 

Heterogeneity: Because various IoT data collection devices collect different information, data heterogeneity 

occurs. Time and space correlation: In most IoT applications, sensor devices are connected to a particular 

place, so each data item has a location and a time-stamp. High-noise data: Because IoT applications use small 

bits of data, many of these data may be susceptible to mistakes and noise during collection and transmission. 

Although extracting hidden knowledge and information from big data has the potential to improve our lives, it 

is not a simple or straightforward process. New technologies, algorithms, and infrastructures are required for 

such a complicated and difficult job that goes beyond the capability of conventional inference and learning 

methods. Fortunately, recent advancements in both fast computing and sophisticated machine learning methods 

are paving the way for IoT-friendly big data analytics and information extraction.  

Beyond big data analytics, IoT data necessitates a new kind of analytics, known as fast and streaming data 

analytics, to support applications that need time-sensitive (i.e., real-time or near real-time) operations. Indeed, 

applications such as autonomous driving, fire prediction, and identification of driver/elderly position (and 

therefore awareness and/or health state) require rapid data processing and actions to accomplish their goals. 

Several academics have suggested methods and frameworks for rapid streaming data analytics that take use of 

cloud infrastructures and services. Fast analytics on smaller scale platforms (i.e., at the system edge) or even on 

the IoT devices themselves are required for the aforementioned IoT applications, among others. Autonomous 

vehicles, for example, must make quick judgments on driving activities such as lane or speed changes.  

Indeed, fast analytics of potentially multi-modal data streaming from several sources, including multiple 

vehicle sensors (e.g., cameras, radars, LIDARs, speedometer, left/right signals, etc.), communications from 

other vehicles, and traffic entities (e.g., traffic lights, traffic signs), should be used to support such decisions. In 

this instance, the delay in sending data to a cloud server for processing and delivering the answer may result in 

traffic infractions or accidents [2]. Detecting pedestrians by such vehicles would be a more dangerous 

situation. To avoid catastrophic accidents, accurate identification should be done in real time. To avoid 

needless and expensive connection delays, these situations indicate that rapid data analytics for IoT must be 

near to or at the source of data. Figure 1 show the IoT data generation at different levels and deep learning 

models to address their knowledge abstraction. 
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Figure 1: IoT Data Generation at Different Levels and Deep Learning Models To Address Their 

Knowledge Abstraction 

2. DISCUSSION 

We examine a broad variety of deep neural network techniques in this article. (DNN) architectures, as well as 

the IoT applications that they enable.DL algorithms have aided them. Five issues are identified in the article. 

Fundamental IoT services that may be utilized in a variety of scenarios beyond the particular services in each 

domain, vertical domains exist.It will also go through the features of IoT apps and how to develop them. The 

way to finding the best suitable DL for them model. The convergence of two developing trends is the subject 

of this study. One is in communication networks, i.e., IoT, and the other is in manufacturing. other in artificial 

intelligence, e.g., DL, describing their capabilities open problems and applications The poll does not take into 

account IoT data analytics using conventional machine learning techniques As stated in section I-B, there have 

been a few additional efforts. that have dealt with similar issues[4]. In addition, this survey does not go into the 

specifics of IoT infrastructure from a technical standpoint from the standpoint of communication and 

networking. 

To the best of our knowledge, no such article exists in the literature devoted to researching a particular topic 

the relationship between IoT data and deep learning, as well as applications of deep learningIn the IoT, DL 

techniques are used. There are just a few works that depict frequent situations.Methods of data mining and 

machine learning that have been usedIn IoT contexts, this is utilized. Tsai's work is featured in. It dealt with 

categorization, grouping, and mining of common patterns IoT infrastructure and services need algorithms. 

However, that study did not take into account DL methods, which is where the emphasis is now the results of 

our poll Furthermore, they concentrate mostly on offline data. Mining, whereas learning and mining are also 

considered for both Big data analytics and real-time (i.e., quickly) analytics have examined several types of 

supervised and unsupervised machine learning techniques rules, fuzzy logic, and so on) in the reasoning phase 

of a context aware computing system, and we've spoken about the advantages and disadvantages of each.  

Using those techniques in Internet of Things (IoT) technologies. Despite this, they also the impact of DL on 

context reasoning was not investigated. The authors looked at machine learning techniques in that paper 

routing, localization, and other functional features of Winces well as non-functional needs, such as clustering 
as well as service quality and security. They looked at a number of options supervised, unsupervised, and 

reinforcement algorithms methods to learning. The emphasis of this project is on the infrastructure of WSN 

(one possible infrastructure for deploying WSN). In this study, accuracy refers to the degree to which the 

outcome is accurate of the forecast matches the values in the ground truth Readers may also have to deal with 

in the text, top-2 or top-3 accuracy is required. Top-N accuracies is a term that refers to the accuracy of the first 

N items in a list. Taking into account the prediction model's N highest-probability responses and determining 

whether or not the collection has the anticipated value As a result, top1 accuracy refers to the output with the 

greatest likelihood. Similarly, the top threeThe three most likely forecasts are referred to as accuracy. For 

instance, if we give a model that identifies animal pictures a picture of a tiger, and it will identify it [1]. 
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2.1. Application: 

IoT data may be constantly transmitted or collected as a large data source. Streaming data is data that is 

produced or collected in very short periods of time and must be evaluated quickly in order to extract instant 

insights and/or make quick choices. Big data refers to large datasets that can't be stored, managed, processed, 

or analyzed using standard technology and software platforms. These two methods should be handled 

differently since their analytic response needs are not the same. Big data analytics insights may take many days 

to provide, whereas streaming data analytics insights should be available in a few hundred milliseconds to a 

few seconds[5]. In order to create ubiquitous environments based on IoT data, data fusion and sharing are 

essential. This function is much more important in time-sensitive IoT applications, as rapid data fusion is 

required to bring all bits of data together for analysis, resulting in trustworthy and accurate actionable insights 

published a survey article in which they discussed data fusion methods for IoT settings, as well as possibilities 

and obstacles. 

2.1.1. IoT data that is both rapid and streaming: 

Many studies have recommended that streaming data analytics be used primarily on high-performance 

computer systems or cloud platforms. On such systems, streaming data analytics is built on data parallelism 

and incremental processing. A big dataset is partitioned into many smaller datasets using data parallelism, and 

parallel analytics are conducted on all of them at the same time. Incremental processing is the technique of 

retrieving a small batch of data and processing it rapidly in a series of computing jobs. Although these methods 

decrease the time it takes for the streaming data analytic framework to respond, they are not the ideal option 

for time-sensitive IoT applications. Because the quantity of the data in the source enables it to be analyzed 

quickly, putting streaming data analytics closer to the source of data (i.e., IoT devices or edge devices) reduces 
the need for data parallelism and incremental processing. However, delivering rapid analytics to IoT devices 

comes with its own set of difficulties, including a lack of processing, storage, and power resources at the data 

source. 

2.1.2. Internet of Things a lot of data: 

The Internet of Things (IoT) is well-known as one of the main sources of big data, since it is built on 

connecting a large number of smart devices to the Internet to report on the condition of their surroundings on a 

regular basis. The fundamental use of big data analytics is to recognize and extract significant patterns from 

massive raw input data, resulting in greater degrees of insight for decision-making and trend prediction. 

Extraction of these insights and information from big data is thus critical for many companies, since it allows 

them to acquire competitive advantages. In the social sciences, Hilbert compares the effect of big data analytics 

to those of the telescope and microscope, respectively, in astronomy and biology. Several studies have defined 

the general characteristics of big data from various perspectives in terms of volume, velocity, and diversity [6]. 

2.2. Advantage: 

DL is made up of supervised and unsupervised learning methods that use many layers of Artificial Neural 

Networks (ANNs) to build hierarchical representations in deep structures. Multiple processing layers make up 

DL architectures. Based on the data from its input layer, each layer may generate non-linear responses. The 

functioning of DL is modeled after the signal processing processes of the human brain and neurons. In 

comparison to other conventional machine learning methods, DL architectures have gotten greater attention in 

recent years. Shallow-structured learning architectures variants (i.e., a restricted subset) of DL are referred to 

as such methods. Illustrates the Google trends search trend for five prominent machine learning algorithms, 

with DL growing more popular than the others. Although artificial neural networks (ANNs) have been around 

for decades, G. Hinton et al. proposed the idea of deep belief networks in 2006. Following that, this 

technology's state-of-the-art performance has been seen in a variety of AI areas, including image recognition, 

image retrieval, search engines and information retrieval, and natural language processing. 

On top of conventional ANNs, DL methods have been created. Feed-forward Neural Networks (FNNs) (also 

known as Multilayer Perceptron-MLPs) have been used to train systems for decades, but as the number of 

layers is increased, the complexity of the system increases. As the number of trainees grows, it becomes more 

difficult to train them. Another issue that leads to over fitted models is the small amount of training data. 

Furthermore, the computing limitations at the time prevented the development of efficient deeper FNNs. These 
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computational constraints have recently been overcome thanks to recent technology advancements, particularly 

the creation of Graphics Processing Units (GPUs) and hardware accelerators. Beyond the structural aspects and 

significance of depth in DL architectures, as well as hardware advancements, DL techniques have benefited 

from advances in effective deep network training algorithms, such as: Using Rectified Linear Units (ReLUs) as 

an activation function  When compared to conventional ANNs, one benefit of DL architectures is that they can 

learn hidden features from raw data . Each layer learns a set of characteristics based on the outputs of the 

preceding layer. Because the innermost layers collect and recombine information from earlier layers, they may 

identify more complex features.  

This is referred to as the feature hierarchy. In the case of a face recognition model, for example, raw picture 

data from portraits is given to the model's input layer as a vector of pixels. The outputs of each hidden layer 

can then be used to learn more abstract features, such as the first hidden layer identifying lines and edges, the 

second layer identifying face parts such as nose, eyes, and so on, and the third layer combining all of the 

previous features to generate a face. The claimed gains of DL models, on the other hand, are based on 

empirical assessments, and there is currently no solid analytical basis to explain why DL methods outperform 

shallow equivalents. Furthermore, depending on the number of hidden layers, there is no obvious distinction 

between deep and shallow networks. Deep models are neural networks with two or more hidden layers that 

include the most current sophisticated training methods. Recurrent neural networks with one hidden layer are 

also considered deep because the hidden layer's units have a cycle that can be unrolled to produce an 

equivalent deep network [7].  

In this part, we'll go over a few popular DL models as well as some of the most cutting-edge designs that have 

been developed in recent years. Interested readers may look for additional information on the models and 
architectures of DL in other publications, such as. An input layer, several hidden layers, and an output layer 

make up a DNN. A neuron is an artificial neural network unit having many inputs, trainable weights, and bias. 

It performs a summation over its inputs, then passes the result via an activation function to generate an output. 

Each neuron has a weight vector and a bias linked with its input size that should be adjusted throughout the 

training phase. The input layer adds (typically arbitrarily) weights to the input training data and sends it to the 

next layer throughout the training process. Each layer after that gives weights to its input and generates an 

output that acts as the input for the next layer.  

The final output reflecting the model prediction is generated at the last layer. By calculating the error rate 

between the predicted and actual values, a loss function assesses the accuracy of this prediction. By computing 

the gradient of the loss function, an optimization method such as Stochastic Gradient Descent is used to change 

the weight of neurons. Backpropagation algorithm propagates the error rate back through the network to the 

input layer. After balancing the weights on each neuron in each cycle, the network continues the training cycle 

until the error rate falls below a specified threshold. In a general sense, DL models may be divided into three 

types: generative, discriminative, and hybrid models. Discriminative models are used for supervised learning, 

while generative models are used for unsupervised learning, though this is not a strict distinction. The 

advantages of both discriminative and generative models are combined in hybrid models [8]. 

2.3. Working: 

An encoder and a decoder are the two primary components of an AE. The encoder takes the input and converts 

it into a new representation, which is often referred to as a code or latent variable. The decoder takes the 

encoder's produced code and converts it into a reconstruction of the original input. In AEs, the training process 

includes reducing reconstruction error, which is defined as the discrepancy between the output and the input 

being as little as possible. The construction of a typical AE is shown in Figure 10. Denoising AE, contractive 

AE, stacking AE, sparse AE, and variational AE are some of the variants and expansions of AEs.In many jobs, 

prediction is reliant on many prior samples, thus we must evaluate input sequences in addition to categorizing 

individual samples. A feed-forward neural network isn't suitable for such tasks.because it implies that input 

and output are unrelatedlayers.  

RNNs were creative Time-series issues (sensor data) or sequential (e.g., voice or text) difficulties with varying 

lengths. Detecting the actions of drivers Identifying unique movement patterns in smart cars and calculating a 

household's energy usage are two examples.RNNs may be used in a variety of situations. The data that an RNN 

receives as inputcomprises of the present sample as well as the previously observed sample sample. In other 
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words, an RNN's output at time step t1has an impact on the output at time step t. Each neuron has its own set 

of sensors.a feedback loop in which the current output is used as an input for the next stephe next step This 

structure may be expressed in the following way: Each neuron in an RNN has an internal memory that stores 

information.information from the preceding input's calculations A backpropagation extension was used to train 

the network.Backpropagation Through Time is the name of the algorithm (BPTT) is employed. We can see 

cycles on the neurons because they exist [9]. 

3. CONCLUSION 

In recent years, academics and business sectors have focused on DL and IoT, since these two technological 

developments have shown to have a beneficial impact on our lives, cities, and globe. IoT and DL form a data 

producer-consumer cycle in which IoT produces raw data that DL models evaluate, and DL models produce 

high-level abstraction and insight that is supplied to IoT systems for fine-tuning and service enhancement. The 

features of IoT data and the difficulties it poses to DL techniques in our study. This paper focused on IoT rapid 

and streaming data, as well as IoT large data, as the two major categories of IoT data production and associated 

analytical needs. It also discussed many major DL architectures that are utilized in IoT applications, as well as 

various open source frameworks for developing DL designs. Another aspect of our study was looking at 

different applications in various IoT industries that have used DL, and we came up with five fundamental 

services and eleven application domains. The authors established a framework for other researchers to grasp 

the fundamental components of IoT smart services and apply applicable methods to their issues by separating 

foundational services from IoT vertical applications and evaluating their DL methodologies and use cases. The 

new paradigm for implementing DL on IoT devices was examined, and various methods for doing so were 

presented. This study included included DL based on fog and cloud infrastructures to enable IoT applications. 
We also highlighted the barriers to DL for IoT applications, as well as future research directions [10]. 
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